| 1. | The generalization of newton ' s interpolation formula 插值公式的推广 |
| 2. | Backward interpolation formula 后向插值公式 |
| 3. | Digital watermarking sharing algorithm based on lagrange interpolation formula 基于拉格朗日插值公式的数字水印分存算法 |
| 4. | Newton interpolation formula 牛顿内插公式 |
| 5. | Back interpolation formula 后插公式 |
| 6. | By analysing the interpolation formula principle and the error rule , we put forward remainder inspection in available area , and explains to the application range of the formula 通过对插值拟合公式原理及误差规律的分析,提出确定可用区间的“去值检验”方法,说明了插值拟合公式的应用范围。 |
| 7. | By analysing the interpolation formula principle and the error rule , we put forward " remainder inspection " in available area , and explains to the application range of the formula 通过对插值拟合公式原理及误差规律的分析,提出确定可用区间的“去值检验”方法,说明了插值拟合公式的应用范围。 |
| 8. | An alternate proof about its existence and uniqueness and its explicit represention are given , especially the rational interpolation formulas for simple konts and double konts , and the algorithm complexity in case of double konts is improved from o ( n ~ 2 ) to o ( n ) 首先,介绍了cv ( cauchy - vandermonde )有理函数插值公式,给出了cv有理函数空间上插值问题解的存在唯一性定理的另一种简单证明和显式表示 |
| 9. | It deduces the interpolation formula of simultaneous sampling datum calculated by the asimultaneous sampling datum and uses fast fourier transform ( fft ) technology to calculate harmonic parameters . in the end , it gives harmonic errors " datum and curves by means of math model and computer simulation 在此基础上,导出了用非同步采样数据计算同步采样数据的插值公式,并根据复序列快速傅立叶变换( fft )原理对插值后的采样数据进行分析和计算,从而得到电网谐波参数。 |
| 10. | In this paper , we analyze difference solutions of the burgers - kdv type equations with the periodic boundary condition by use of functional analysis method . the existence of difference solutions is proved by fixed - point theorem and the priori estimates of the difference solution are obtained using interpolation formula of sobolev space . the convergence and stability are proved 本文应用泛函分析方法对一系列burgers - kdv型方程周期边值问题的差分解进行了分析,运用各种不动点原理证明了差分解的存在性,应用sobolev空间的离散内插公式得到了差分解及其各阶差商的先验估计,利用得到的先验估计证明了差分解的收敛性和稳定性。 |